Commit 7cfe1967 authored by Tollef Fog Heen's avatar Tollef Fog Heen

Use a red-black tree for storing the varnishtop entries

When using varnishtop -1 on a large log file, the old linked list
approach was very slow.  Using a tree increases performance
significantly.  In a test, old was 15 minutes, 52 seconds, new code
changes that to about 1.8 seconds.
parent 57d212ea
......@@ -48,7 +48,7 @@
#include "vapi/vsm.h"
#include "vas.h"
#include "vcs.h"
#include "vqueue.h"
#include "vtree.h"
#include "vsb.h"
#if 0
......@@ -62,11 +62,14 @@ struct top {
char *rec_data;
int clen;
unsigned hash;
VTAILQ_ENTRY(top) list;
VRB_ENTRY(top) entry;
double count;
};
static VTAILQ_HEAD(tophead, top) top_head = VTAILQ_HEAD_INITIALIZER(top_head);
static int top_cmp(const struct top *tp, const struct top *tp2);
static VRB_HEAD(top_tree, top) top_tree_head = VRB_INITIALIZER(&top_tree_head);
VRB_PROTOTYPE(top_tree, top, entry, top_cmp);
static unsigned ntop;
......@@ -78,12 +81,40 @@ static int f_flag = 0;
static unsigned maxfieldlen = 0;
VRB_GENERATE(top_tree, top, entry, top_cmp);
static int top_cmp(const struct top *tp, const struct top *tp2)
{
if (tp->count == tp2->count || tp->count == 0.0) {
if (tp->hash == tp2->hash) {
if (tp->tag == tp2->tag) {
if (tp->clen == tp2->clen) {
return (memcmp(tp->rec_data, tp2->rec_data, tp->clen));
} else {
return (tp->clen - tp2->clen);
}
} else {
return (tp->tag - tp2->tag);
}
} else {
return (tp->hash - tp2->hash);
}
} else {
if (tp->count > tp2->count)
return -1;
else
return 1;
}
}
static int
accumulate(void *priv, enum VSL_tag_e tag, unsigned fd, unsigned len,
unsigned spec, const char *ptr, uint64_t bm)
{
struct top *tp, *tp2;
struct top *tp, t;
const char *q;
char *rd;
unsigned int u;
int i;
......@@ -102,21 +133,22 @@ accumulate(void *priv, enum VSL_tag_e tag, unsigned fd, unsigned len,
}
u += *q;
}
t.hash = u;
t.tag = tag;
t.clen = len;
rd = malloc(len);
AN(rd);
memcpy(rd, ptr, len);
t.rec_data = rd;
AZ(pthread_mutex_lock(&mtx));
VTAILQ_FOREACH(tp, &top_head, list) {
if (tp->hash != u)
continue;
if (tp->tag != tag)
continue;
if (tp->clen != len)
continue;
if (memcmp(ptr, tp->rec_data, len))
continue;
tp = VRB_FIND(top_tree, &top_tree_head, &t);
if (tp) {
VRB_REMOVE(top_tree, &top_tree_head, tp);
tp->count += 1.0;
break;
}
if (tp == NULL) {
/* Reinsert to rebalance */
VRB_INSERT(top_tree, &top_tree_head, tp);
} else {
ntop++;
tp = calloc(sizeof *tp, 1);
assert(tp != NULL);
......@@ -128,21 +160,7 @@ accumulate(void *priv, enum VSL_tag_e tag, unsigned fd, unsigned len,
tp->tag = tag;
memcpy(tp->rec_data, ptr, len);
tp->rec_data[len] = '\0';
VTAILQ_INSERT_TAIL(&top_head, tp, list);
}
while (1) {
tp2 = VTAILQ_PREV(tp, tophead, list);
if (tp2 == NULL || tp2->count >= tp->count)
break;
VTAILQ_REMOVE(&top_head, tp2, list);
VTAILQ_INSERT_AFTER(&top_head, tp, tp2, list);
}
while (1) {
tp2 = VTAILQ_NEXT(tp, list);
if (tp2 == NULL || tp2->count <= tp->count)
break;
VTAILQ_REMOVE(&top_head, tp2, list);
VTAILQ_INSERT_BEFORE(tp, tp2, list);
VRB_INSERT(top_tree, &top_tree_head, tp);
}
AZ(pthread_mutex_unlock(&mtx));
......@@ -170,7 +188,8 @@ update(const struct VSM_data *vd, int period)
AC(erase());
AC(mvprintw(0, 0, "%*s", COLS - 1, VSM_Name(vd)));
AC(mvprintw(0, 0, "list length %u", ntop));
VTAILQ_FOREACH_SAFE(tp, &top_head, list, tp2) {
for (tp = VRB_MIN(top_tree, &top_tree_head); tp != NULL; tp = tp2) {
tp2 = VRB_NEXT(top_tree, &top_tree_head, tp);
if (++l < LINES) {
len = tp->clen;
if (len > COLS - 20)
......@@ -183,7 +202,7 @@ update(const struct VSM_data *vd, int period)
}
tp->count += (1.0/3.0 - tp->count) / (double)n;
if (tp->count * 10 < t || l > LINES * 10) {
VTAILQ_REMOVE(&top_head, tp, list);
VRB_REMOVE(top_tree, &top_tree_head, tp);
free(tp->rec_data);
free(tp);
ntop--;
......@@ -276,10 +295,12 @@ static void
dump(void)
{
struct top *tp, *tp2;
VTAILQ_FOREACH_SAFE(tp, &top_head, list, tp2) {
printf("%d\n", ntop);
printf("%p\n", VRB_MIN(top_tree, &top_tree_head));
for (tp = VRB_MIN(top_tree, &top_tree_head); tp != NULL; tp = tp2) {
tp2 = VRB_NEXT(top_tree, &top_tree_head, tp);
if (tp->count <= 1.0)
break;
break;
printf("%9.2f %s %*.*s\n",
tp->count, VSL_tags[tp->tag],
tp->clen, tp->clen, tp->rec_data);
......
/* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */
/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
/* $FreeBSD: release/9.0.0/sys/sys/tree.h 189204 2009-03-01 04:57:23Z bms $ */
/*-
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _VTREE_H_
#define _VTREE_H_
/*
* This file defines data structures for different types of trees:
* splay trees and red-black trees.
*
* A splay tree is a self-organizing data structure. Every operation
* on the tree causes a splay to happen. The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree. On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n). The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
#define VSPLAY_HEAD(name, type) \
struct name { \
struct type *sph_root; /* root of the tree */ \
}
#define VSPLAY_INITIALIZER(root) \
{ NULL }
#define VSPLAY_INIT(root) do { \
(root)->sph_root = NULL; \
} while (/*CONSTCOND*/ 0)
#define VSPLAY_ENTRY(type) \
struct { \
struct type *spe_left; /* left element */ \
struct type *spe_right; /* right element */ \
}
#define VSPLAY_LEFT(elm, field) (elm)->field.spe_left
#define VSPLAY_RIGHT(elm, field) (elm)->field.spe_right
#define VSPLAY_ROOT(head) (head)->sph_root
#define VSPLAY_EMPTY(head) (VSPLAY_ROOT(head) == NULL)
/* VSPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold VSPLAY_{RIGHT,LEFT} */
#define VSPLAY_ROTATE_RIGHT(head, tmp, field) do { \
VSPLAY_LEFT((head)->sph_root, field) = VSPLAY_RIGHT(tmp, field); \
VSPLAY_RIGHT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (/*CONSTCOND*/ 0)
#define VSPLAY_ROTATE_LEFT(head, tmp, field) do { \
VSPLAY_RIGHT((head)->sph_root, field) = VSPLAY_LEFT(tmp, field); \
VSPLAY_LEFT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (/*CONSTCOND*/ 0)
#define VSPLAY_LINKLEFT(head, tmp, field) do { \
VSPLAY_LEFT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = VSPLAY_LEFT((head)->sph_root, field); \
} while (/*CONSTCOND*/ 0)
#define VSPLAY_LINKRIGHT(head, tmp, field) do { \
VSPLAY_RIGHT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = VSPLAY_RIGHT((head)->sph_root, field); \
} while (/*CONSTCOND*/ 0)
#define VSPLAY_ASSEMBLE(head, node, left, right, field) do { \
VSPLAY_RIGHT(left, field) = VSPLAY_LEFT((head)->sph_root, field); \
VSPLAY_LEFT(right, field) = VSPLAY_RIGHT((head)->sph_root, field);\
VSPLAY_LEFT((head)->sph_root, field) = VSPLAY_RIGHT(node, field); \
VSPLAY_RIGHT((head)->sph_root, field) = VSPLAY_LEFT(node, field); \
} while (/*CONSTCOND*/ 0)
/* Generates prototypes and inline functions */
#define VSPLAY_PROTOTYPE(name, type, field, cmp) \
void name##_VSPLAY(struct name *, struct type *); \
void name##_VSPLAY_MINMAX(struct name *, int); \
struct type *name##_VSPLAY_INSERT(struct name *, struct type *); \
struct type *name##_VSPLAY_REMOVE(struct name *, struct type *); \
\
/* Finds the node with the same key as elm */ \
static __inline struct type * \
name##_VSPLAY_FIND(struct name *head, struct type *elm) \
{ \
if (VSPLAY_EMPTY(head)) \
return(NULL); \
name##_VSPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) \
return (head->sph_root); \
return (NULL); \
} \
\
static __inline struct type * \
name##_VSPLAY_NEXT(struct name *head, struct type *elm) \
{ \
name##_VSPLAY(head, elm); \
if (VSPLAY_RIGHT(elm, field) != NULL) { \
elm = VSPLAY_RIGHT(elm, field); \
while (VSPLAY_LEFT(elm, field) != NULL) { \
elm = VSPLAY_LEFT(elm, field); \
} \
} else \
elm = NULL; \
return (elm); \
} \
\
static __inline struct type * \
name##_VSPLAY_MIN_MAX(struct name *head, int val) \
{ \
name##_VSPLAY_MINMAX(head, val); \
return (VSPLAY_ROOT(head)); \
}
/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define VSPLAY_GENERATE(name, type, field, cmp) \
struct type * \
name##_VSPLAY_INSERT(struct name *head, struct type *elm) \
{ \
if (VSPLAY_EMPTY(head)) { \
VSPLAY_LEFT(elm, field) = VSPLAY_RIGHT(elm, field) = NULL; \
} else { \
int __comp; \
name##_VSPLAY(head, elm); \
__comp = (cmp)(elm, (head)->sph_root); \
if(__comp < 0) { \
VSPLAY_LEFT(elm, field) = VSPLAY_LEFT((head)->sph_root, field);\
VSPLAY_RIGHT(elm, field) = (head)->sph_root; \
VSPLAY_LEFT((head)->sph_root, field) = NULL; \
} else if (__comp > 0) { \
VSPLAY_RIGHT(elm, field) = VSPLAY_RIGHT((head)->sph_root, field);\
VSPLAY_LEFT(elm, field) = (head)->sph_root; \
VSPLAY_RIGHT((head)->sph_root, field) = NULL; \
} else \
return ((head)->sph_root); \
} \
(head)->sph_root = (elm); \
return (NULL); \
} \
\
struct type * \
name##_VSPLAY_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *__tmp; \
if (VSPLAY_EMPTY(head)) \
return (NULL); \
name##_VSPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) { \
if (VSPLAY_LEFT((head)->sph_root, field) == NULL) { \
(head)->sph_root = VSPLAY_RIGHT((head)->sph_root, field);\
} else { \
__tmp = VSPLAY_RIGHT((head)->sph_root, field); \
(head)->sph_root = VSPLAY_LEFT((head)->sph_root, field);\
name##_VSPLAY(head, elm); \
VSPLAY_RIGHT((head)->sph_root, field) = __tmp; \
} \
return (elm); \
} \
return (NULL); \
} \
\
void \
name##_VSPLAY(struct name *head, struct type *elm) \
{ \
struct type __node, *__left, *__right, *__tmp; \
int __comp; \
\
VSPLAY_LEFT(&__node, field) = VSPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \
if (__comp < 0) { \
__tmp = VSPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) < 0){ \
VSPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (VSPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
VSPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = VSPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) > 0){ \
VSPLAY_ROTATE_LEFT(head, __tmp, field); \
if (VSPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
VSPLAY_LINKRIGHT(head, __left, field); \
} \
} \
VSPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
} \
\
/* Splay with either the minimum or the maximum element \
* Used to find minimum or maximum element in tree. \
*/ \
void name##_VSPLAY_MINMAX(struct name *head, int __comp) \
{ \
struct type __node, *__left, *__right, *__tmp; \
\
VSPLAY_LEFT(&__node, field) = VSPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while (1) { \
if (__comp < 0) { \
__tmp = VSPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp < 0){ \
VSPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (VSPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
VSPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = VSPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp > 0) { \
VSPLAY_ROTATE_LEFT(head, __tmp, field); \
if (VSPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
VSPLAY_LINKRIGHT(head, __left, field); \
} \
} \
VSPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
}
#define VSPLAY_NEGINF -1
#define VSPLAY_INF 1
#define VSPLAY_INSERT(name, x, y) name##_VSPLAY_INSERT(x, y)
#define VSPLAY_REMOVE(name, x, y) name##_VSPLAY_REMOVE(x, y)
#define VSPLAY_FIND(name, x, y) name##_VSPLAY_FIND(x, y)
#define VSPLAY_NEXT(name, x, y) name##_VSPLAY_NEXT(x, y)
#define VSPLAY_MIN(name, x) (VSPLAY_EMPTY(x) ? NULL \
: name##_VSPLAY_MIN_MAX(x, VSPLAY_NEGINF))
#define VSPLAY_MAX(name, x) (VSPLAY_EMPTY(x) ? NULL \
: name##_VSPLAY_MIN_MAX(x, VSPLAY_INF))
#define VSPLAY_FOREACH(x, name, head) \
for ((x) = VSPLAY_MIN(name, head); \
(x) != NULL; \
(x) = VSPLAY_NEXT(name, head, x))
/* Macros that define a red-black tree */
#define VRB_HEAD(name, type) \
struct name { \
struct type *rbh_root; /* root of the tree */ \
}
#define VRB_INITIALIZER(root) \
{ NULL }
#define VRB_INIT(root) do { \
(root)->rbh_root = NULL; \
} while (/*CONSTCOND*/ 0)
#define VRB_BLACK 0
#define VRB_RED 1
#define VRB_ENTRY(type) \
struct { \
struct type *rbe_left; /* left element */ \
struct type *rbe_right; /* right element */ \
struct type *rbe_parent; /* parent element */ \
int rbe_color; /* node color */ \
}
#define VRB_LEFT(elm, field) (elm)->field.rbe_left
#define VRB_RIGHT(elm, field) (elm)->field.rbe_right
#define VRB_PARENT(elm, field) (elm)->field.rbe_parent
#define VRB_COLOR(elm, field) (elm)->field.rbe_color
#define VRB_ROOT(head) (head)->rbh_root
#define VRB_EMPTY(head) (VRB_ROOT(head) == NULL)
#define VRB_SET(elm, parent, field) do { \
VRB_PARENT(elm, field) = parent; \
VRB_LEFT(elm, field) = VRB_RIGHT(elm, field) = NULL; \
VRB_COLOR(elm, field) = VRB_RED; \
} while (/*CONSTCOND*/ 0)
#define VRB_SET_BLACKRED(black, red, field) do { \
VRB_COLOR(black, field) = VRB_BLACK; \
VRB_COLOR(red, field) = VRB_RED; \
} while (/*CONSTCOND*/ 0)
#ifndef VRB_AUGMENT
#define VRB_AUGMENT(x) do {} while (0)
#endif
#define VRB_ROTATE_LEFT(head, elm, tmp, field) do { \
(tmp) = VRB_RIGHT(elm, field); \
if ((VRB_RIGHT(elm, field) = VRB_LEFT(tmp, field)) != NULL) { \
VRB_PARENT(VRB_LEFT(tmp, field), field) = (elm); \
} \
VRB_AUGMENT(elm); \
if ((VRB_PARENT(tmp, field) = VRB_PARENT(elm, field)) != NULL) { \
if ((elm) == VRB_LEFT(VRB_PARENT(elm, field), field)) \
VRB_LEFT(VRB_PARENT(elm, field), field) = (tmp); \
else \
VRB_RIGHT(VRB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
VRB_LEFT(tmp, field) = (elm); \
VRB_PARENT(elm, field) = (tmp); \
VRB_AUGMENT(tmp); \
if ((VRB_PARENT(tmp, field))) \
VRB_AUGMENT(VRB_PARENT(tmp, field)); \
} while (/*CONSTCOND*/ 0)
#define VRB_ROTATE_RIGHT(head, elm, tmp, field) do { \
(tmp) = VRB_LEFT(elm, field); \
if ((VRB_LEFT(elm, field) = VRB_RIGHT(tmp, field)) != NULL) { \
VRB_PARENT(VRB_RIGHT(tmp, field), field) = (elm); \
} \
VRB_AUGMENT(elm); \
if ((VRB_PARENT(tmp, field) = VRB_PARENT(elm, field)) != NULL) { \
if ((elm) == VRB_LEFT(VRB_PARENT(elm, field), field)) \
VRB_LEFT(VRB_PARENT(elm, field), field) = (tmp); \
else \
VRB_RIGHT(VRB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
VRB_RIGHT(tmp, field) = (elm); \
VRB_PARENT(elm, field) = (tmp); \
VRB_AUGMENT(tmp); \
if ((VRB_PARENT(tmp, field))) \
VRB_AUGMENT(VRB_PARENT(tmp, field)); \
} while (/*CONSTCOND*/ 0)
/* Generates prototypes and inline functions */
#define VRB_PROTOTYPE(name, type, field, cmp) \
VRB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
#define VRB_PROTOTYPE_STATIC(name, type, field, cmp) \
VRB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
#define VRB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
attr void name##_VRB_INSERT_COLOR(struct name *, struct type *); \
attr void name##_VRB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
attr struct type *name##_VRB_REMOVE(struct name *, struct type *); \
attr struct type *name##_VRB_INSERT(struct name *, struct type *); \
attr struct type *name##_VRB_FIND(struct name *, struct type *); \
attr struct type *name##_VRB_NFIND(struct name *, struct type *); \
attr struct type *name##_VRB_NEXT(struct type *); \
attr struct type *name##_VRB_PREV(struct type *); \
attr struct type *name##_VRB_MINMAX(struct name *, int); \
\
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define VRB_GENERATE(name, type, field, cmp) \
VRB_GENERATE_INTERNAL(name, type, field, cmp,)
#define VRB_GENERATE_STATIC(name, type, field, cmp) \
VRB_GENERATE_INTERNAL(name, type, field, cmp, __unused static)
#define VRB_GENERATE_INTERNAL(name, type, field, cmp, attr) \
attr void \
name##_VRB_INSERT_COLOR(struct name *head, struct type *elm) \
{ \
struct type *parent, *gparent, *tmp; \
while ((parent = VRB_PARENT(elm, field)) != NULL && \
VRB_COLOR(parent, field) == VRB_RED) { \
gparent = VRB_PARENT(parent, field); \
if (parent == VRB_LEFT(gparent, field)) { \
tmp = VRB_RIGHT(gparent, field); \
if (tmp && VRB_COLOR(tmp, field) == VRB_RED) { \
VRB_COLOR(tmp, field) = VRB_BLACK; \
VRB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (VRB_RIGHT(parent, field) == elm) { \
VRB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
VRB_SET_BLACKRED(parent, gparent, field); \
VRB_ROTATE_RIGHT(head, gparent, tmp, field); \
} else { \
tmp = VRB_LEFT(gparent, field); \
if (tmp && VRB_COLOR(tmp, field) == VRB_RED) { \
VRB_COLOR(tmp, field) = VRB_BLACK; \
VRB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (VRB_LEFT(parent, field) == elm) { \
VRB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
VRB_SET_BLACKRED(parent, gparent, field); \
VRB_ROTATE_LEFT(head, gparent, tmp, field); \
} \
} \
VRB_COLOR(head->rbh_root, field) = VRB_BLACK; \
} \
\
attr void \
name##_VRB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
{ \
struct type *tmp; \
while ((elm == NULL || VRB_COLOR(elm, field) == VRB_BLACK) && \
elm != VRB_ROOT(head)) { \
if (VRB_LEFT(parent, field) == elm) { \
tmp = VRB_RIGHT(parent, field); \
if (VRB_COLOR(tmp, field) == VRB_RED) { \
VRB_SET_BLACKRED(tmp, parent, field); \
VRB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = VRB_RIGHT(parent, field); \
} \
if ((VRB_LEFT(tmp, field) == NULL || \
VRB_COLOR(VRB_LEFT(tmp, field), field) == VRB_BLACK) &&\
(VRB_RIGHT(tmp, field) == NULL || \
VRB_COLOR(VRB_RIGHT(tmp, field), field) == VRB_BLACK)) {\
VRB_COLOR(tmp, field) = VRB_RED; \
elm = parent; \
parent = VRB_PARENT(elm, field); \
} else { \
if (VRB_RIGHT(tmp, field) == NULL || \
VRB_COLOR(VRB_RIGHT(tmp, field), field) == VRB_BLACK) {\
struct type *oleft; \
if ((oleft = VRB_LEFT(tmp, field)) \
!= NULL) \
VRB_COLOR(oleft, field) = VRB_BLACK;\
VRB_COLOR(tmp, field) = VRB_RED; \
VRB_ROTATE_RIGHT(head, tmp, oleft, field);\
tmp = VRB_RIGHT(parent, field); \
} \
VRB_COLOR(tmp, field) = VRB_COLOR(parent, field);\
VRB_COLOR(parent, field) = VRB_BLACK; \
if (VRB_RIGHT(tmp, field)) \
VRB_COLOR(VRB_RIGHT(tmp, field), field) = VRB_BLACK;\
VRB_ROTATE_LEFT(head, parent, tmp, field);\
elm = VRB_ROOT(head); \
break; \
} \
} else { \
tmp = VRB_LEFT(parent, field); \
if (VRB_COLOR(tmp, field) == VRB_RED) { \
VRB_SET_BLACKRED(tmp, parent, field); \
VRB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = VRB_LEFT(parent, field); \
} \
if ((VRB_LEFT(tmp, field) == NULL || \
VRB_COLOR(VRB_LEFT(tmp, field), field) == VRB_BLACK) &&\
(VRB_RIGHT(tmp, field) == NULL || \
VRB_COLOR(VRB_RIGHT(tmp, field), field) == VRB_BLACK)) {\
VRB_COLOR(tmp, field) = VRB_RED; \
elm = parent; \
parent = VRB_PARENT(elm, field); \
} else { \
if (VRB_LEFT(tmp, field) == NULL || \
VRB_COLOR(VRB_LEFT(tmp, field), field) == VRB_BLACK) {\
struct type *oright; \
if ((oright = VRB_RIGHT(tmp, field)) \
!= NULL) \
VRB_COLOR(oright, field) = VRB_BLACK;\
VRB_COLOR(tmp, field) = VRB_RED; \
VRB_ROTATE_LEFT(head, tmp, oright, field);\
tmp = VRB_LEFT(parent, field); \
} \
VRB_COLOR(tmp, field) = VRB_COLOR(parent, field);\
VRB_COLOR(parent, field) = VRB_BLACK; \
if (VRB_LEFT(tmp, field)) \
VRB_COLOR(VRB_LEFT(tmp, field), field) = VRB_BLACK;\
VRB_ROTATE_RIGHT(head, parent, tmp, field);\
elm = VRB_ROOT(head); \
break; \
} \
} \
} \
if (elm) \
VRB_COLOR(elm, field) = VRB_BLACK; \
} \
\
attr struct type * \
name##_VRB_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *child, *parent, *old = elm; \
int color; \
if (VRB_LEFT(elm, field) == NULL) \
child = VRB_RIGHT(elm, field); \
else if (VRB_RIGHT(elm, field) == NULL) \
child = VRB_LEFT(elm, field); \
else { \
struct type *left; \
elm = VRB_RIGHT(elm, field); \
while ((left = VRB_LEFT(elm, field)) != NULL) \
elm = left; \
child = VRB_RIGHT(elm, field); \
parent = VRB_PARENT(elm, field); \
color = VRB_COLOR(elm, field); \
if (child) \
VRB_PARENT(child, field) = parent; \
if (parent) { \
if (VRB_LEFT(parent, field) == elm) \
VRB_LEFT(parent, field) = child; \
else \
VRB_RIGHT(parent, field) = child; \
VRB_AUGMENT(parent); \
} else \
VRB_ROOT(head) = child; \
if (VRB_PARENT(elm, field) == old) \
parent = elm; \
(elm)->field = (old)->field; \
if (VRB_PARENT(old, field)) { \
if (VRB_LEFT(VRB_PARENT(old, field), field) == old)\
VRB_LEFT(VRB_PARENT(old, field), field) = elm;\
else \
VRB_RIGHT(VRB_PARENT(old, field), field) = elm;\
VRB_AUGMENT(VRB_PARENT(old, field)); \
} else \
VRB_ROOT(head) = elm; \
VRB_PARENT(VRB_LEFT(old, field), field) = elm; \
if (VRB_RIGHT(old, field)) \
VRB_PARENT(VRB_RIGHT(old, field), field) = elm; \
if (parent) { \
left = parent; \
do { \
VRB_AUGMENT(left); \
} while ((left = VRB_PARENT(left, field)) != NULL); \
} \
goto color; \
} \
parent = VRB_PARENT(elm, field); \
color = VRB_COLOR(elm, field); \
if (child) \
VRB_PARENT(child, field) = parent; \
if (parent) { \
if (VRB_LEFT(parent, field) == elm) \
VRB_LEFT(parent, field) = child; \
else \
VRB_RIGHT(parent, field) = child; \
VRB_AUGMENT(parent); \
} else \
VRB_ROOT(head) = child; \
color: \
if (color == VRB_BLACK) \
name##_VRB_REMOVE_COLOR(head, parent, child); \
return (old); \
} \
\
/* Inserts a node into the RB tree */ \
attr struct type * \
name##_VRB_INSERT(struct name *head, struct type *elm) \
{ \
struct type *tmp; \
struct type *parent = NULL; \
int comp = 0; \
tmp = VRB_ROOT(head); \
while (tmp) { \
parent = tmp; \
comp = (cmp)(elm, parent); \
if (comp < 0) \
tmp = VRB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = VRB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
VRB_SET(elm, parent, field); \
if (parent != NULL) { \
if (comp < 0) \
VRB_LEFT(parent, field) = elm; \
else \
VRB_RIGHT(parent, field) = elm; \
VRB_AUGMENT(parent); \
} else \
VRB_ROOT(head) = elm; \
name##_VRB_INSERT_COLOR(head, elm); \
return (NULL); \
} \
\
/* Finds the node with the same key as elm */ \
attr struct type * \
name##_VRB_FIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = VRB_ROOT(head); \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) \
tmp = VRB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = VRB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
} \
\
/* Finds the first node greater than or equal to the search key */ \
attr struct type * \
name##_VRB_NFIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = VRB_ROOT(head); \
struct type *res = NULL; \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) { \
res = tmp; \
tmp = VRB_LEFT(tmp, field); \
} \
else if (comp > 0) \
tmp = VRB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (res); \
} \
\
/* ARGSUSED */ \
attr struct type * \
name##_VRB_NEXT(struct type *elm) \
{ \
if (VRB_RIGHT(elm, field)) { \
elm = VRB_RIGHT(elm, field); \
while (VRB_LEFT(elm, field)) \
elm = VRB_LEFT(elm, field); \
} else { \
if (VRB_PARENT(elm, field) && \
(elm == VRB_LEFT(VRB_PARENT(elm, field), field))) \
elm = VRB_PARENT(elm, field); \
else { \
while (VRB_PARENT(elm, field) && \
(elm == VRB_RIGHT(VRB_PARENT(elm, field), field)))\
elm = VRB_PARENT(elm, field); \
elm = VRB_PARENT(elm, field); \
} \
} \
return (elm); \
} \
\
/* ARGSUSED */ \
attr struct type * \
name##_VRB_PREV(struct type *elm) \
{ \
if (VRB_LEFT(elm, field)) { \
elm = VRB_LEFT(elm, field); \
while (VRB_RIGHT(elm, field)) \
elm = VRB_RIGHT(elm, field); \
} else { \
if (VRB_PARENT(elm, field) && \
(elm == VRB_RIGHT(VRB_PARENT(elm, field), field))) \
elm = VRB_PARENT(elm, field); \
else { \
while (VRB_PARENT(elm, field) && \
(elm == VRB_LEFT(VRB_PARENT(elm, field), field)))\
elm = VRB_PARENT(elm, field); \
elm = VRB_PARENT(elm, field); \
} \
} \
return (elm); \
} \
\
attr struct type * \
name##_VRB_MINMAX(struct name *head, int val) \
{ \
struct type *tmp = VRB_ROOT(head); \
struct type *parent = NULL; \
while (tmp) { \
parent = tmp; \
if (val < 0) \
tmp = VRB_LEFT(tmp, field); \
else \
tmp = VRB_RIGHT(tmp, field); \
} \
return (parent); \
}
#define VRB_NEGINF -1
#define VRB_INF 1
#define VRB_INSERT(name, x, y) name##_VRB_INSERT(x, y)
#define VRB_REMOVE(name, x, y) name##_VRB_REMOVE(x, y)
#define VRB_FIND(name, x, y) name##_VRB_FIND(x, y)
#define VRB_NFIND(name, x, y) name##_VRB_NFIND(x, y)
#define VRB_NEXT(name, x, y) name##_VRB_NEXT(y)
#define VRB_PREV(name, x, y) name##_VRB_PREV(y)
#define VRB_MIN(name, x) name##_VRB_MINMAX(x, VRB_NEGINF)
#define VRB_MAX(name, x) name##_VRB_MINMAX(x, VRB_INF)
#define VRB_FOREACH(x, name, head) \
for ((x) = VRB_MIN(name, head); \
(x) != NULL; \
(x) = name##_VRB_NEXT(x))
#define VRB_FOREACH_FROM(x, name, y) \
for ((x) = (y); \
((x) != NULL) && ((y) = name##_VRB_NEXT(x), (x) != NULL); \
(x) = (y))
#define VRB_FOREACH_SAFE(x, name, head, y) \
for ((x) = VRB_MIN(name, head); \
((x) != NULL) && ((y) = name##_VRB_NEXT(x), (x) != NULL); \
(x) = (y))
#define VRB_FOREACH_REVERSE(x, name, head) \
for ((x) = VRB_MAX(name, head); \
(x) != NULL; \
(x) = name##_VRB_PREV(x))
#define VRB_FOREACH_REVERSE_FROM(x, name, y) \
for ((x) = (y); \
((x) != NULL) && ((y) = name##_VRB_PREV(x), (x) != NULL); \
(x) = (y))
#define VRB_FOREACH_REVERSE_SAFE(x, name, head, y) \
for ((x) = VRB_MAX(name, head); \
((x) != NULL) && ((y) = name##_VRB_PREV(x), (x) != NULL); \
(x) = (y))
#endif /* _VTREE_H_ */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment